Prime numbers in range 1142+1 - 1152 (12.770 - 12.996)

Summary of 227 numbers
Previous · Index · Next

12.769

Go to: previous range...







12.770

[1]no
[6]3
[7]1284
[8]7
[9]10234
[0]
6.385
[A]Deficient
[5]38[S]

12.771

[1]no
[6]5
[7]63
[8]15
[9]8349
[0]
4.257
[A]Deficient
[5]38[S]

12.772

[1]no
[6]4
[7]138
[8]11
[9]10524
[0]
6.386
[A]Deficient
[5]64[S]

12.773

[1]no
[6]2
[7]294
[8]3
[9]295
[0]
241
[A]Deficient
[5]12[S]

12.774

[1]no
[6]3
[7]2134
[8]7
[9]12786
[0]
6.387
[A]Abundant
[5]25[S]

12.775

[1]no
[6]4
[7]90
[8]11
[9]5577
[0]
2.555
[A]Deficient
[5]25[S]

12.776

[1]no
[6]4
[7]1603
[8]7
[9]11194
[0]
6.388
[A]Deficient
[5]64[S]

12.777

[1]no
[6]2
[7]4262
[8]3
[9]4263
[0]
4.259
[A]Deficient
[5]56[S]

12.778

[1]no
[6]2
[7]6391
[8]3
[9]6392
[0]
6.389
[A]Deficient
[5]12[S]

12.779

[1]no
[6]2
[7]996
[8]3
[9]997
[0]
983
[A]Deficient
[5]78[S]

12.780

[1]no
[6]6
[7]86
[8]35
[9]26532
[0]
6.390
[A]Abundant
[5]64[S]

12.781

[1]yes
[2] no
[3] no
[4] no



[5]33[S]

12.782

[1]no
[6]4
[7]103
[8]15
[9]11410
[0]
6.391
[A]Deficient
[5]33[S]

12.783

[1]no
[6]2
[7]4264
[8]3
[9]4265
[0]
4.261
[A]Deficient
[5]25[S]

12.784

[1]no
[6]6
[7]72
[8]19
[9]14000
[0]
6.392
[A]Abundant (%6≠0)
[5]28[S]

12.785

[1]no
[6]2
[7]2562
[8]3
[9]2563
[0]
2.557
[A]Deficient
[5]33[S]

12.786

[1]no
[6]3
[7]2136
[8]7
[9]12798
[0]
6.393
[A]Abundant
[5]20[S]

12.787

[1]no
[6]2
[7]692
[8]3
[9]693
[0]
673
[A]Deficient
[5]20[S]

12.788

[1]no
[6]4
[7]166
[8]11
[9]10732
[0]
6.394
[A]Deficient
[5]28[S]

12.789

[1]no
[6]5
[7]49
[8]17
[9]9441
[0]
4.263
[A]Deficient
[5]20[S]

12.790

[1]no
[6]3
[7]1286
[8]7
[9]10250
[0]
6.395
[A]Deficient
[5]20[S]

12.791

[1]yes
[2]yes
[3] no
[4] no



[5]46[S]

12.792

[1]no
[6]6
[7]63
[8]31
[9]22488
[0]
6.396
[A]Abundant
[5]28[S]

12.793

[1]no
[6]2
[7]1174
[8]3
[9]1175
[0]
1.163
[A]Deficient
[5]47[S]

12.794

[1]no
[6]2
[7]6399
[8]3
[9]6400
[0]
6.397
[A]Deficient
[5]15[S]

12.795

[1]no
[6]3
[7]861
[8]7
[9]7701
[0]
4.265
[A]Deficient
[5]64[S]

12.796

[1]no
[6]4
[7]468
[8]11
[9]12852
[0]
6.398
[A]Abundant (%6≠0)
[5]39[S]

12.797

[1]no
[6]2
[7]258
[8]3
[9]259
[0]
191
[A]Deficient
[5]28[S]

12.798

[1]no
[6]6
[7]93
[8]19
[9]16242
[0]
6.399
[A]Abundant
[5]28[S]

12.799

[1]yes
[2]yes
[3] no
[4] no



[5]39[S]

12.800

[1]no
[6]11
[7]28
[8]29
[9]18913
[0]
6.400
[A]Abundant (%6≠0)
[5]28[S]

12.801

[1]no
[6]3
[7]271
[8]7
[9]5343
[0]
4.267
[A]Deficient
[5]28[S]

12.802

[1]no
[6]3
[7]212
[8]7
[9]7034
[0]
6.401
[A]Deficient
[5]28[S]

12.803

[1]no
[6]3
[7]97
[8]7
[9]2557
[0]
1.829
[A]Deficient
[5]28[S]

12.804

[1]no
[6]5
[7]115
[8]23
[9]20124
[0]
6.402
[A]Abundant
[5]20[S]

12.805

[1]no
[6]3
[7]215
[8]7
[9]3827
[0]
2.561
[A]Deficient
[5]15[S]

12.806

[1]no
[6]3
[7]358
[8]7
[9]7474
[0]
6.403
[A]Deficient
[5]41[S]

12.807

[1]no
[6]3
[7]1429
[8]5
[9]5705
[0]
4.269
[A]Deficient
[5]41[S]

12.808

[1]no
[6]4
[7]1607
[8]7
[9]11222
[0]
6.404
[A]Deficient
[5]28[S]

12.809

[1]yes
[2] no
[3] no
[4] no



[5]46[S]

12.810

[1]no
[6]5
[7]78
[8]31
[9]22902
[0]
6.405
[A]Abundant
[5]59[S]

12.811

[1]no
[6]2
[7]580
[8]3
[9]581
[0]
557
[A]Deficient
[5]28[S]

12.812

[1]no
[6]3
[7]3207
[8]5
[9]9616
[0]
6.406
[A]Deficient
[5]41[S]

12.813

[1]no
[6]2
[7]4274
[8]3
[9]4275
[0]
4.271
[A]Deficient
[5]59[S]

12.814

[1]no
[6]3
[7]194
[8]7
[9]6986
[0]
6.407
[A]Deficient
[5]38[S]

12.815

[1]no
[6]3
[7]249
[8]7
[9]4033
[0]
2.563
[A]Deficient
[5]34[S]

12.816

[1]no
[6]7
[7]103
[8]29
[9]23454
[0]
6.408
[A]Abundant
[5]28[S]

12.817

[1]no
[6]2
[7]1838
[8]3
[9]1839
[0]
1.831
[A]Deficient
[5]15[S]

12.818

[1]no
[6]4
[7]61
[8]15
[9]9862
[0]
6.409
[A]Deficient
[5]36[S]

12.819

[1]no
[6]2
[7]4276
[8]3
[9]4277
[0]
4.273
[A]Deficient
[5]36[S]

12.820

[1]no
[6]4
[7]650
[8]11
[9]14144
[0]
6.410
[A]Abundant (%6≠0)
[5]28[S]

12.821

[1]yes
[2] no
[3]yes
[4] no



[5]23[S]

12.822

[1]no
[6]3
[7]2142
[8]7
[9]12834
[0]
6.411
[A]Abundant
[5]23[S]

12.823

[1]yes
[2]yes
[3]yes
[4] no



[5]27[S]

12.824

[1]no
[6]5
[7]242
[8]15
[9]14776
[0]
6.412
[A]Abundant (%6≠0)
[5]33[S]

12.825

[1]no
[6]6
[7]38
[8]23
[9]11975
[0]
4.275
[A]Deficient
[5]36[S]

12.826

[1]no
[6]4
[7]77
[8]11
[9]8720
[0]
6.413
[A]Deficient
[5]23[S]

12.827

[1]no
[6]2
[7]228
[8]3
[9]229
[0]
127
[A]Deficient
[5]23[S]

12.828

[1]no
[6]4
[7]1076
[8]11
[9]17132
[0]
6.414
[A]Abundant
[5]29[S]

12.829

[1]yes
[2] no
[3] no
[4] no



[5]23[S]

12.830

[1]no
[6]3
[7]1290
[8]7
[9]10282
[0]
6.415
[A]Deficient
[5]49[S]

12.831

[1]no
[6]4
[7]70
[8]15
[9]8673
[0]
4.277
[A]Deficient
[5]38[S]

12.832

[1]no
[6]6
[7]411
[8]11
[9]12494
[0]
6.416
[A]Deficient
[5]15[S]

12.833

[1]no
[6]2
[7]354
[8]3
[9]355
[0]
313
[A]Deficient
[5]54[S]

12.834

[1]no
[6]5
[7]62
[8]23
[9]17118
[0]
6.417
[A]Abundant
[5]50[S]

12.835

[1]no
[6]3
[7]173
[8]7
[9]3581
[0]
2.567
[A]Deficient
[5]50[S]

12.836

[1]no
[6]3
[7]3213
[8]5
[9]9634
[0]
6.418
[A]Deficient
[5]41[S]

12.837

[1]no
[6]3
[7]403
[8]7
[9]5883
[0]
4.279
[A]Deficient
[5]10[S]

12.838

[1]no
[6]4
[7]147
[8]11
[9]9734
[0]
6.419
[A]Deficient
[5]67[S]

12.839

[1]no
[6]2
[7]384
[8]3
[9]385
[0]
347
[A]Deficient
[5]15[S]

12.840

[1]no
[6]6
[7]121
[8]31
[9]26040
[0]
6.420
[A]Abundant
[5]41[S]

12.841

[1]yes
[2] no
[3] no
[4] no



[5]31[S]

12.842

[1]no
[6]2
[7]6423
[8]3
[9]6424
[0]
6.421
[A]Deficient
[5]31[S]

12.843

[1]no
[6]3
[7]1433
[8]5
[9]5721
[0]
4.281
[A]Deficient
[5]42[S]

12.844

[1]no
[6]5
[7]49
[8]17
[9]12776
[0]
6.422
[A]Deficient
[5]41[S]

12.845

[1]no
[6]3
[7]379
[8]7
[9]4819
[0]
2.569
[A]Deficient
[5]31[S]

12.846

[1]no
[6]3
[7]2146
[8]7
[9]12858
[0]
6.423
[A]Abundant
[5]44[S]

12.847

[1]no
[6]2
[7]472
[8]3
[9]473
[0]
443
[A]Deficient
[5]47[S]

12.848

[1]no
[6]6
[7]92
[8]19
[9]14680
[0]
6.424
[A]Abundant (%6≠0)
[5]15[S]

12.849

[1]no
[6]2
[7]4286
[8]3
[9]4287
[0]
4.283
[A]Deficient
[5]36[S]

12.850

[1]no
[6]4
[7]269
[8]11
[9]11144
[0]
6.425
[A]Deficient
[5]18[S]

12.851

[1]no
[6]2
[7]252
[8]3
[9]253
[0]
181
[A]Deficient
[5]18[S]

12.852

[1]no
[6]7
[7]37
[8]47
[9]27468
[0]
6.426
[A]Abundant
[5]15[S]

12.853

[1]yes
[2] no
[3] no
[4] no



[5]18[S]

12.854

[1]no
[6]2
[7]6429
[8]3
[9]6430
[0]
6.427
[A]Deficient
[5]18[S]

12.855

[1]no
[6]3
[7]865
[8]7
[9]7737
[0]
4.285
[A]Deficient
[5]21[S]

12.856

[1]no
[6]4
[7]1613
[8]7
[9]11264
[0]
6.428
[A]Deficient
[5]46[S]

12.857

[1]no
[6]3
[7]79
[8]7
[9]1927
[0]
989
[A]Deficient
[5]45[S]

12.858

[1]no
[6]3
[7]2148
[8]7
[9]12870
[0]
6.429
[A]Abundant
[5]26[S]

12.859

[1]no
[6]3
[7]185
[8]7
[9]3269
[0]
1.837
[A]Deficient
[5]31[S]

12.860

[1]no
[6]4
[7]652
[8]11
[9]14188
[0]
6.430
[A]Abundant (%6≠0)
[5]42[S]

12.861

[1]no
[6]3
[7]1435
[8]5
[9]5729
[0]
4.287
[A]Deficient
[5]62[S]

12.862

[1]no
[6]3
[7]170
[8]7
[9]6938
[0]
6.431
[A]Deficient
[5]62[S]

12.863

[1]no
[6]2
[7]696
[8]3
[9]697
[0]
677
[A]Deficient
[5]60[S]

12.864

[1]no
[6]8
[7]82
[8]27
[9]21680
[0]
6.432
[A]Abundant
[5]59[S]

12.865

[1]no
[6]3
[7]119
[8]7
[9]3263
[0]
2.573
[A]Deficient
[5]26[S]

12.866

[1]no
[6]3
[7]928
[8]7
[9]9214
[0]
6.433
[A]Deficient
[5]18[S]

12.867

[1]no
[6]2
[7]4292
[8]3
[9]4293
[0]
4.289
[A]Deficient
[5]18[S]

12.868

[1]no
[6]3
[7]3221
[8]5
[9]9658
[0]
6.434
[A]Deficient
[5]28[S]

12.869

[1]no
[6]2
[7]774
[8]3
[9]775
[0]
757
[A]Deficient
[5]26[S]

12.870

[1]no
[6]6
[7]37
[8]47
[9]26442
[0]
6.435
[A]Abundant
[5]39[S]

12.871

[1]no
[6]2
[7]272
[8]3
[9]273
[0]
211
[A]Deficient
[5]19[S]

12.872

[1]no
[6]4
[7]1615
[8]7
[9]11278
[0]
6.436
[A]Deficient
[5]59[S]

12.873

[1]no
[6]3
[7]623
[8]7
[9]6775
[0]
4.291
[A]Deficient
[5]31[S]

12.874

[1]no
[6]3
[7]200
[8]7
[9]7034
[0]
6.437
[A]Deficient
[5]39[S]

12.875

[1]no
[6]4
[7]118
[8]7
[9]3349
[0]
2.575
[A]Deficient
[5]27[S]

12.876

[1]no
[6]5
[7]73
[8]23
[9]19044
[0]
6.438
[A]Abundant
[5]43[S]

12.877

[1]no
[6]2
[7]242
[8]3
[9]243
[0]
163
[A]Deficient
[5]39[S]

12.878

[1]no
[6]3
[7]186
[8]7
[9]6994
[0]
6.439
[A]Deficient
[5]43[S]

12.879

[1]no
[6]6
[7]68
[8]11
[9]6777
[0]
4.293
[A]Deficient
[5]50[S]

12.880

[1]no
[6]7
[7]43
[8]39
[9]22832
[0]
6.440
[A]Abundant (%6≠0)
[5]59[S]

12.881

[1]no
[6]2
[7]1182
[8]3
[9]1183
[0]
1.171
[A]Deficient
[5]44[S]

12.882

[1]no
[6]4
[7]137
[8]15
[9]14478
[0]
6.441
[A]Abundant
[5]26[S]

12.883

[1]no
[6]2
[7]1004
[8]3
[9]1005
[0]
991
[A]Deficient
[5]26[S]

12.884

[1]no
[6]3
[7]3225
[8]5
[9]9670
[0]
6.442
[A]Deficient
[5]59[S]

12.885

[1]no
[6]3
[7]867
[8]7
[9]7755
[0]
4.295
[A]Deficient
[5]57[S]

12.886

[1]no
[6]3
[7]398
[8]7
[9]7634
[0]
6.443
[A]Deficient
[5]57[S]

12.887

[1]no
[6]3
[7]277
[8]5
[9]2161
[0]
1.841
[A]Deficient
[5]53[S]

12.888

[1]no
[6]6
[7]191
[8]23
[9]22212
[0]
6.444
[A]Abundant
[5]38[S]

12.889

[1]yes
[2] no
[3] no
[4] no



[5]36[S]

12.890

[1]no
[6]3
[7]1296
[8]7
[9]10330
[0]
6.445
[A]Deficient
[5]13[S]

12.891

[1]no
[6]2
[7]4300
[8]3
[9]4301
[0]
4.297
[A]Deficient
[5]21[S]

12.892

[1]no
[6]4
[7]308
[8]11
[9]11804
[0]
6.446
[A]Deficient
[5]16[S]

12.893

[1]yes
[2] no
[3] no
[4] no



[5]13[S]

12.894

[1]no
[6]4
[7]319
[8]15
[9]16674
[0]
6.447
[A]Abundant
[5]70[S]

12.895

[1]no
[6]2
[7]2584
[8]3
[9]2585
[0]
2.579
[A]Deficient
[5]24[S]

12.896

[1]no
[6]7
[7]54
[8]23
[9]15328
[0]
6.448
[A]Abundant (%6≠0)
[5]23[S]

12.897

[1]no
[6]3
[7]1439
[8]5
[9]5745
[0]
4.299
[A]Deficient
[5]34[S]

12.898

[1]no
[6]2
[7]6451
[8]3
[9]6452
[0]
6.449
[A]Deficient
[5]34[S]

12.899

[1]yes
[2]yes
[3] no
[4] no



[5]14[S]

12.900

[1]no
[6]6
[7]60
[8]35
[9]25292
[0]
6.450
[A]Abundant
[5]75[S]

12.901

[1]no
[6]3
[7]123
[8]7
[9]2779
[0]
1.843
[A]Deficient
[5]21[S]

12.902

[1]no
[6]2
[7]6453
[8]3
[9]6454
[0]
6.451
[A]Deficient
[5]34[S]

12.903

[1]no
[6]4
[7]54
[8]15
[9]7833
[0]
4.301
[A]Deficient
[5]30[S]

12.904

[1]no
[6]4
[7]1619
[8]7
[9]11306
[0]
6.452
[A]Deficient
[5]15[S]

12.905

[1]no
[6]3
[7]123
[8]7
[9]3295
[0]
2.581
[A]Deficient
[5]34[S]

12.906

[1]no
[6]5
[7]250
[8]15
[9]15894
[0]
6.453
[A]Abundant
[5]21[S]

12.907

[1]yes
[2]yes
[3] no
[4] no



[5]12[S]

12.908

[1]no
[6]4
[7]472
[8]11
[9]12964
[0]
6.454
[A]Abundant (%6≠0)
[5]15[S]

12.909

[1]no
[6]3
[7]347
[8]7
[9]5683
[0]
4.303
[A]Deficient
[5]39[S]

12.910

[1]no
[6]3
[7]1298
[8]7
[9]10346
[0]
6.455
[A]Deficient
[5]29[S]

12.911

[1]yes
[2]yes
[3] no
[4] no



[5]28[S]

12.912

[1]no
[6]6
[7]280
[8]19
[9]20568
[0]
6.456
[A]Abundant
[5]36[S]

12.913

[1]no
[6]2
[7]386
[8]3
[9]387
[0]
349
[A]Deficient
[5]47[S]

12.914

[1]no
[6]3
[7]600
[8]7
[9]8254
[0]
6.457
[A]Deficient
[5]21[S]

12.915

[1]no
[6]5
[7]59
[8]23
[9]13293
[0]
4.305
[A]Abundant (%6≠0)
[5]23[S]

12.916

[1]no
[6]3
[7]3233
[8]5
[9]9694
[0]
6.458
[A]Deficient
[5]36[S]

12.917

[1]yes
[2] no
[3]yes
[4] no



[5]52[S]

12.918

[1]no
[6]3
[7]2158
[8]7
[9]12930
[0]
6.459
[A]Abundant
[5]52[S]

12.919

[1]yes
[2]yes
[3]yes
[4] no



[5]18[S]

12.920

[1]no
[6]6
[7]47
[8]31
[9]19480
[0]
6.460
[A]Abundant (%6≠0)
[5]36[S]

12.921

[1]no
[6]3
[7]135
[8]7
[9]4839
[0]
4.307
[A]Deficient
[5]68[S]

12.922

[1]no
[6]4
[7]93
[8]15
[9]11270
[0]
6.461
[A]Deficient
[5]16[S]

12.923

[1]yes
[2]yes
[3] no
[4] no



[5]39[S]

12.924

[1]no
[6]5
[7]369
[8]17
[9]19836
[0]
6.462
[A]Abundant
[5]13[S]

12.925

[1]no
[6]4
[7]68
[8]11
[9]4931
[0]
2.585
[A]Deficient
[5]65[S]

12.926

[1]no
[6]3
[7]306
[8]7
[9]7378
[0]
6.463
[A]Deficient
[5]65[S]

12.927

[1]no
[6]3
[7]173
[8]7
[9]4993
[0]
4.309
[A]Deficient
[5]34[S]

12.928

[1]no
[6]8
[7]115
[8]15
[9]13082
[0]
6.464
[A]Abundant (%6≠0)
[5]23[S]

12.929

[1]no
[6]2
[7]1854
[8]3
[9]1855
[0]
1.847
[A]Deficient
[5]29[S]

12.930

[1]no
[6]4
[7]441
[8]15
[9]18174
[0]
6.465
[A]Abundant
[5]29[S]

12.931

[1]no
[6]2
[7]260
[8]3
[9]261
[0]
193
[A]Deficient
[5]16[S]

12.932

[1]no
[6]4
[7]118
[8]11
[9]10504
[0]
6.466
[A]Deficient
[5]28[S]

12.933

[1]no
[6]4
[7]488
[8]7
[9]6267
[0]
4.311
[A]Deficient
[5]29[S]

12.934

[1]no
[6]3
[7]254
[8]7
[9]7226
[0]
6.467
[A]Deficient
[5]24[S]

12.935

[1]no
[6]3
[7]217
[8]7
[9]3865
[0]
2.587
[A]Deficient
[5]42[S]

12.936

[1]no
[6]7
[7]34
[8]47
[9]28104
[0]
6.468
[A]Abundant
[5]23[S]

12.937

[1]no
[6]2
[7]778
[8]3
[9]779
[0]
761
[A]Deficient
[5]42[S]

12.938

[1]no
[6]2
[7]6471
[8]3
[9]6472
[0]
6.469
[A]Deficient
[5]29[S]

12.939

[1]no
[6]3
[7]249
[8]7
[9]5301
[0]
4.313
[A]Deficient
[5]37[S]

12.940

[1]no
[6]4
[7]656
[8]11
[9]14276
[0]
6.470
[A]Abundant (%6≠0)
[5]24[S]

12.941

[1]yes
[2] no
[3] no
[4] no



[5]34[S]

12.942

[1]no
[6]4
[7]727
[8]11
[9]15138
[0]
6.471
[A]Abundant
[5]39[S]

12.943

[1]no
[6]3
[7]93
[8]5
[9]2201
[0]
1.849
[A]Deficient
[5]50[S]

12.944

[1]no
[6]5
[7]817
[8]9
[9]12166
[0]
6.472
[A]Deficient
[5]36[S]

12.945

[1]no
[6]3
[7]871
[8]7
[9]7791
[0]
4.315
[A]Deficient
[5]42[S]

12.946

[1]no
[6]2
[7]6475
[8]3
[9]6476
[0]
6.473
[A]Deficient
[5]42[S]

12.947

[1]no
[6]3
[7]129
[8]5
[9]1417
[0]
1.177
[A]Deficient
[5]32[S]

12.948

[1]no
[6]5
[7]103
[8]23
[9]19980
[0]
6.474
[A]Abundant
[5]36[S]

12.949

[1]no
[6]2
[7]586
[8]3
[9]587
[0]
563
[A]Deficient
[5]16[S]

12.950

[1]no
[6]5
[7]56
[8]23
[9]15322
[0]
6.475
[A]Abundant (%6≠0)
[5]16[S]

12.951

[1]no
[6]3
[7]1445
[8]5
[9]5769
[0]
4.317
[A]Deficient
[5]19[S]

12.952

[1]no
[6]4
[7]1625
[8]7
[9]11348
[0]
6.476
[A]Deficient
[5]36[S]

12.953

[1]yes
[2] no
[3] no
[4] no



[5]43[S]

12.954

[1]no
[6]4
[7]149
[8]15
[9]14694
[0]
6.477
[A]Abundant
[5]60[S]

12.955

[1]no
[6]2
[7]2596
[8]3
[9]2597
[0]
2.591
[A]Deficient
[5]19[S]

12.956

[1]no
[6]4
[7]124
[8]11
[9]10564
[0]
6.478
[A]Deficient
[5]40[S]

12.957

[1]no
[6]3
[7]627
[8]7
[9]6819
[0]
4.319
[A]Deficient
[5]60[S]

12.958

[1]no
[6]4
[7]63
[8]15
[9]10082
[0]
6.479
[A]Deficient
[5]44[S]

12.959

[1]yes
[2]yes
[3] no
[4] no



[5]47[S]

12.960

[1]no
[6]10
[7]27
[8]59
[9]32778
[0]
6.480
[A]Abundant
[5]23[S]

12.961

[1]no
[6]2
[7]1010
[8]3
[9]1011
[0]
997
[A]Deficient
[5]60[S]

12.962

[1]no
[6]2
[7]6483
[8]3
[9]6484
[0]
6.481
[A]Deficient
[5]39[S]

12.963

[1]no
[6]3
[7]181
[8]7
[9]5037
[0]
4.321
[A]Deficient
[5]14[S]

12.964

[1]no
[6]4
[7]474
[8]11
[9]13020
[0]
6.482
[A]Abundant (%6≠0)
[5]23[S]

12.965

[1]no
[6]2
[7]2598
[8]3
[9]2599
[0]
2.593
[A]Deficient
[5]24[S]

12.966

[1]no
[6]3
[7]2166
[8]7
[9]12978
[0]
6.483
[A]Abundant
[5]76[S]

12.967

[1]yes
[2]yes
[3] no
[4] no



[5]35[S]

12.968

[1]no
[6]4
[7]1627
[8]7
[9]11362
[0]
6.484
[A]Deficient
[5]41[S]

12.969

[1]no
[6]4
[7]148
[8]11
[9]7623
[0]
4.323
[A]Deficient
[5]19[S]

12.970

[1]no
[6]3
[7]1304
[8]7
[9]10394
[0]
6.485
[A]Deficient
[5]37[S]

12.971

[1]no
[6]3
[7]133
[8]7
[9]2869
[0]
1.853
[A]Deficient
[5]22[S]

12.972

[1]no
[6]5
[7]77
[8]23
[9]19284
[0]
6.486
[A]Abundant
[5]17[S]

12.973

[1]yes
[2] no
[3] no
[4] no



[5]37[S]

12.974

[1]no
[6]3
[7]514
[8]7
[9]8026
[0]
6.487
[A]Deficient
[5]14[S]

12.975

[1]no
[6]4
[7]186
[8]11
[9]8601
[0]
4.325
[A]Deficient
[5]66[S]

12.976

[1]no
[6]5
[7]819
[8]9
[9]12196
[0]
6.488
[A]Deficient
[5]23[S]

12.977

[1]no
[6]2
[7]702
[8]3
[9]703
[0]
683
[A]Deficient
[5]29[S]

12.978

[1]no
[6]5
[7]118
[8]23
[9]19470
[0]
6.489
[A]Abundant
[5]24[S]

12.979

[1]yes
[2]yes
[3] no
[4] no



[5]30[S]

12.980

[1]no
[6]5
[7]79
[8]23
[9]17260
[0]
6.490
[A]Abundant (%6≠0)
[5]23[S]

12.981

[1]no
[6]2
[7]4330
[8]3
[9]4331
[0]
4.327
[A]Deficient
[5]37[S]

12.982

[1]no
[6]2
[7]6493
[8]3
[9]6494
[0]
6.491
[A]Deficient
[5]37[S]

12.983

[1]yes
[2]yes
[3] no
[4] no



[5]17[S]

12.984

[1]no
[6]5
[7]550
[8]15
[9]19536
[0]
6.492
[A]Abundant
[5]49[S]

12.985

[1]no
[6]4
[7]72
[8]11
[9]5483
[0]
2.597
[A]Deficient
[5]41[S]

12.986

[1]no
[6]3
[7]196
[8]7
[9]7078
[0]
6.493
[A]Deficient
[5]24[S]

12.987

[1]no
[6]5
[7]59
[8]15
[9]8293
[0]
4.329
[A]Deficient
[5]40[S]

12.988

[1]no
[6]4
[7]212
[8]11
[9]11204
[0]
6.494
[A]Deficient
[5]38[S]

12.989

[1]no
[6]2
[7]450
[8]3
[9]451
[0]
419
[A]Deficient
[5]42[S]

12.990

[1]no
[6]4
[7]443
[8]15
[9]18258
[0]
6.495
[A]Abundant
[5]18[S]

12.991

[1]no
[6]2
[7]1192
[8]3
[9]1193
[0]
1.181
[A]Deficient
[5]24[S]

12.992

[1]no
[6]8
[7]48
[8]27
[9]17488
[0]
6.496
[A]Abundant (%6≠0)
[5]54[S]

12.993

[1]no
[6]3
[7]135
[8]7
[9]4863
[0]
4.331
[A]Deficient
[5]24[S]

12.994

[1]no
[6]3
[7]164
[8]7
[9]6986
[0]
6.497
[A]Deficient
[5]50[S]

12.995

[1]no
[6]3
[7]141
[8]7
[9]3421
[0]
2.599
[A]Deficient
[5]25[S]

12.996

[1]no
[6]6
[7]48
[8]26
[9]21675
[0]
6.498
[A]Abundant
[5]49[S]

12.997

Go to: next range...








Coolway © 2025-09-16 22:18:44